In-class ex4

Calibrating Hedonic Pricing Model for Private Highrise Property with GWR Method

Getting Started

Installing and Loading R Packages

The R packages needed for this hands-on exercise include:

  • R package for building OLS and performing diagnostics tests

    • olsrr - a wrapper containing regression model and a range of diagnostic tools
  • R package for calibrating geographical weighted family of models

    • GWmodel
  • R package for multivariate data visualization and analysis

    • corrplot
  • Spatial data handling

    • sf
  • Attribute data handling

    • tidyverse, especially readr, ggplot2 and dplyr
  • Choropleth mapping

    • tmap
pacman::p_load(olsrr, corrplot, ggpubr, sf, spdep, GWmodel, tmap, tidyverse, gtsummary)

Geospatial Data Wrangling

Importing geospatial data

Importing the URA Master Plan 2014 shapefile containing the planning subzone boundaries using st_read() function of sf package:

mpsz <- st_read(dsn = "data/geospatial", layer = "MP14_SUBZONE_WEB_PL")
Reading layer `MP14_SUBZONE_WEB_PL' from data source 
  `C:\HzzZZ11\ISSS624\In-class_EX\In-class Ex4\data\geospatial' 
  using driver `ESRI Shapefile'
Simple feature collection with 323 features and 15 fields
Geometry type: MULTIPOLYGON
Dimension:     XY
Bounding box:  xmin: 2667.538 ymin: 15748.72 xmax: 56396.44 ymax: 50256.33
Projected CRS: SVY21

Updating CRS information

Transforming the imported simple feature object to the correct EPSG map projection of 3414:

(Note: SVY21 is local version of map projection, while 3414 is the international version, the two versions may have slight differences, hence the transformation is necessary)

mpsz_svy21 <- st_transform(mpsz, 3414)

Checking the projection of the transformed object:

st_crs(mpsz_svy21)
Coordinate Reference System:
  User input: EPSG:3414 
  wkt:
PROJCRS["SVY21 / Singapore TM",
    BASEGEOGCRS["SVY21",
        DATUM["SVY21",
            ELLIPSOID["WGS 84",6378137,298.257223563,
                LENGTHUNIT["metre",1]]],
        PRIMEM["Greenwich",0,
            ANGLEUNIT["degree",0.0174532925199433]],
        ID["EPSG",4757]],
    CONVERSION["Singapore Transverse Mercator",
        METHOD["Transverse Mercator",
            ID["EPSG",9807]],
        PARAMETER["Latitude of natural origin",1.36666666666667,
            ANGLEUNIT["degree",0.0174532925199433],
            ID["EPSG",8801]],
        PARAMETER["Longitude of natural origin",103.833333333333,
            ANGLEUNIT["degree",0.0174532925199433],
            ID["EPSG",8802]],
        PARAMETER["Scale factor at natural origin",1,
            SCALEUNIT["unity",1],
            ID["EPSG",8805]],
        PARAMETER["False easting",28001.642,
            LENGTHUNIT["metre",1],
            ID["EPSG",8806]],
        PARAMETER["False northing",38744.572,
            LENGTHUNIT["metre",1],
            ID["EPSG",8807]]],
    CS[Cartesian,2],
        AXIS["northing (N)",north,
            ORDER[1],
            LENGTHUNIT["metre",1]],
        AXIS["easting (E)",east,
            ORDER[2],
            LENGTHUNIT["metre",1]],
    USAGE[
        SCOPE["Cadastre, engineering survey, topographic mapping."],
        AREA["Singapore - onshore and offshore."],
        BBOX[1.13,103.59,1.47,104.07]],
    ID["EPSG",3414]]

The EPSG is now 3414 as intended.

Checking the extent of the object:

st_bbox(mpsz_svy21)
     xmin      ymin      xmax      ymax 
 2667.538 15748.721 56396.440 50256.334 

Aspatial Data Wrangling

Importing aspatial data

Importing the condominium resale 2015 data in CSV file format using read_csv() function of readr package as a tibble data frame:

condo_resale <- read_csv("data/aspatial/Condo_resale_2015.csv")
Rows: 1436 Columns: 23
── Column specification ────────────────────────────────────────────────────────
Delimiter: ","
dbl (23): LATITUDE, LONGITUDE, POSTCODE, SELLING_PRICE, AREA_SQM, AGE, PROX_...

ℹ Use `spec()` to retrieve the full column specification for this data.
ℹ Specify the column types or set `show_col_types = FALSE` to quiet this message.

Checking the structure and content of the imported data:

glimpse(condo_resale)
Rows: 1,436
Columns: 23
$ LATITUDE             <dbl> 1.287145, 1.328698, 1.313727, 1.308563, 1.321437,…
$ LONGITUDE            <dbl> 103.7802, 103.8123, 103.7971, 103.8247, 103.9505,…
$ POSTCODE             <dbl> 118635, 288420, 267833, 258380, 467169, 466472, 3…
$ SELLING_PRICE        <dbl> 3000000, 3880000, 3325000, 4250000, 1400000, 1320…
$ AREA_SQM             <dbl> 309, 290, 248, 127, 145, 139, 218, 141, 165, 168,…
$ AGE                  <dbl> 30, 32, 33, 7, 28, 22, 24, 24, 27, 31, 17, 22, 6,…
$ PROX_CBD             <dbl> 7.941259, 6.609797, 6.898000, 4.038861, 11.783402…
$ PROX_CHILDCARE       <dbl> 0.16597932, 0.28027246, 0.42922669, 0.39473543, 0…
$ PROX_ELDERLYCARE     <dbl> 2.5198118, 1.9333338, 0.5021395, 1.9910316, 1.121…
$ PROX_URA_GROWTH_AREA <dbl> 6.618741, 7.505109, 6.463887, 4.906512, 6.410632,…
$ PROX_HAWKER_MARKET   <dbl> 1.76542207, 0.54507614, 0.37789301, 1.68259969, 0…
$ PROX_KINDERGARTEN    <dbl> 0.05835552, 0.61592412, 0.14120309, 0.38200076, 0…
$ PROX_MRT             <dbl> 0.5607188, 0.6584461, 0.3053433, 0.6910183, 0.528…
$ PROX_PARK            <dbl> 1.1710446, 0.1992269, 0.2779886, 0.9832843, 0.116…
$ PROX_PRIMARY_SCH     <dbl> 1.6340256, 0.9747834, 1.4715016, 1.4546324, 0.709…
$ PROX_TOP_PRIMARY_SCH <dbl> 3.3273195, 0.9747834, 1.4715016, 2.3006394, 0.709…
$ PROX_SHOPPING_MALL   <dbl> 2.2102717, 2.9374279, 1.2256850, 0.3525671, 1.307…
$ PROX_SUPERMARKET     <dbl> 0.9103958, 0.5900617, 0.4135583, 0.4162219, 0.581…
$ PROX_BUS_STOP        <dbl> 0.10336166, 0.28673408, 0.28504777, 0.29872340, 0…
$ NO_Of_UNITS          <dbl> 18, 20, 27, 30, 30, 31, 32, 32, 32, 32, 34, 34, 3…
$ FAMILY_FRIENDLY      <dbl> 0, 0, 0, 0, 0, 1, 1, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0…
$ FREEHOLD             <dbl> 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1…
$ LEASEHOLD_99YR       <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0…
head(condo_resale$LONGITUDE)
[1] 103.7802 103.8123 103.7971 103.8247 103.9505 103.9386
head(condo_resale$LATITUDE)
[1] 1.287145 1.328698 1.313727 1.308563 1.321437 1.314198

Using summary() function in R to display the summary statistics of the data frame:

summary(condo_resale)
    LATITUDE       LONGITUDE        POSTCODE      SELLING_PRICE     
 Min.   :1.240   Min.   :103.7   Min.   : 18965   Min.   :  540000  
 1st Qu.:1.309   1st Qu.:103.8   1st Qu.:259849   1st Qu.: 1100000  
 Median :1.328   Median :103.8   Median :469298   Median : 1383222  
 Mean   :1.334   Mean   :103.8   Mean   :440439   Mean   : 1751211  
 3rd Qu.:1.357   3rd Qu.:103.9   3rd Qu.:589486   3rd Qu.: 1950000  
 Max.   :1.454   Max.   :104.0   Max.   :828833   Max.   :18000000  
    AREA_SQM          AGE           PROX_CBD       PROX_CHILDCARE    
 Min.   : 34.0   Min.   : 0.00   Min.   : 0.3869   Min.   :0.004927  
 1st Qu.:103.0   1st Qu.: 5.00   1st Qu.: 5.5574   1st Qu.:0.174481  
 Median :121.0   Median :11.00   Median : 9.3567   Median :0.258135  
 Mean   :136.5   Mean   :12.14   Mean   : 9.3254   Mean   :0.326313  
 3rd Qu.:156.0   3rd Qu.:18.00   3rd Qu.:12.6661   3rd Qu.:0.368293  
 Max.   :619.0   Max.   :37.00   Max.   :19.1804   Max.   :3.465726  
 PROX_ELDERLYCARE  PROX_URA_GROWTH_AREA PROX_HAWKER_MARKET PROX_KINDERGARTEN 
 Min.   :0.05451   Min.   :0.2145       Min.   :0.05182    Min.   :0.004927  
 1st Qu.:0.61254   1st Qu.:3.1643       1st Qu.:0.55245    1st Qu.:0.276345  
 Median :0.94179   Median :4.6186       Median :0.90842    Median :0.413385  
 Mean   :1.05351   Mean   :4.5981       Mean   :1.27987    Mean   :0.458903  
 3rd Qu.:1.35122   3rd Qu.:5.7550       3rd Qu.:1.68578    3rd Qu.:0.578474  
 Max.   :3.94916   Max.   :9.1554       Max.   :5.37435    Max.   :2.229045  
    PROX_MRT         PROX_PARK       PROX_PRIMARY_SCH  PROX_TOP_PRIMARY_SCH
 Min.   :0.05278   Min.   :0.02906   Min.   :0.07711   Min.   :0.07711     
 1st Qu.:0.34646   1st Qu.:0.26211   1st Qu.:0.44024   1st Qu.:1.34451     
 Median :0.57430   Median :0.39926   Median :0.63505   Median :1.88213     
 Mean   :0.67316   Mean   :0.49802   Mean   :0.75471   Mean   :2.27347     
 3rd Qu.:0.84844   3rd Qu.:0.65592   3rd Qu.:0.95104   3rd Qu.:2.90954     
 Max.   :3.48037   Max.   :2.16105   Max.   :3.92899   Max.   :6.74819     
 PROX_SHOPPING_MALL PROX_SUPERMARKET PROX_BUS_STOP       NO_Of_UNITS    
 Min.   :0.0000     Min.   :0.0000   Min.   :0.001595   Min.   :  18.0  
 1st Qu.:0.5258     1st Qu.:0.3695   1st Qu.:0.098356   1st Qu.: 188.8  
 Median :0.9357     Median :0.5687   Median :0.151710   Median : 360.0  
 Mean   :1.0455     Mean   :0.6141   Mean   :0.193974   Mean   : 409.2  
 3rd Qu.:1.3994     3rd Qu.:0.7862   3rd Qu.:0.220466   3rd Qu.: 590.0  
 Max.   :3.4774     Max.   :2.2441   Max.   :2.476639   Max.   :1703.0  
 FAMILY_FRIENDLY     FREEHOLD      LEASEHOLD_99YR  
 Min.   :0.0000   Min.   :0.0000   Min.   :0.0000  
 1st Qu.:0.0000   1st Qu.:0.0000   1st Qu.:0.0000  
 Median :0.0000   Median :0.0000   Median :0.0000  
 Mean   :0.4868   Mean   :0.4227   Mean   :0.4882  
 3rd Qu.:1.0000   3rd Qu.:1.0000   3rd Qu.:1.0000  
 Max.   :1.0000   Max.   :1.0000   Max.   :1.0000  

Converting aspatial data frame into a sf object

Using st_as_sf() function of sf package to convert the aspatial data frame to a simple feature data frame and transforming it to the same map projection:

condo_resale.sf <- st_as_sf(condo_resale,
                            coords = c("LONGITUDE", "LATITUDE"),
                            crs=4326) %>%
  st_transform(crs=3414)

Checking the content of the transformed data:

head(condo_resale.sf)
Simple feature collection with 6 features and 21 fields
Geometry type: POINT
Dimension:     XY
Bounding box:  xmin: 22085.12 ymin: 29951.54 xmax: 41042.56 ymax: 34546.2
Projected CRS: SVY21 / Singapore TM
# A tibble: 6 × 22
  POSTCODE SELLI…¹ AREA_…²   AGE PROX_…³ PROX_…⁴ PROX_…⁵ PROX_…⁶ PROX_…⁷ PROX_…⁸
     <dbl>   <dbl>   <dbl> <dbl>   <dbl>   <dbl>   <dbl>   <dbl>   <dbl>   <dbl>
1   118635 3000000     309    30    7.94   0.166   2.52     6.62   1.77   0.0584
2   288420 3880000     290    32    6.61   0.280   1.93     7.51   0.545  0.616 
3   267833 3325000     248    33    6.90   0.429   0.502    6.46   0.378  0.141 
4   258380 4250000     127     7    4.04   0.395   1.99     4.91   1.68   0.382 
5   467169 1400000     145    28   11.8    0.119   1.12     6.41   0.565  0.461 
6   466472 1320000     139    22   10.3    0.125   0.789    5.09   0.781  0.0994
# … with 12 more variables: PROX_MRT <dbl>, PROX_PARK <dbl>,
#   PROX_PRIMARY_SCH <dbl>, PROX_TOP_PRIMARY_SCH <dbl>,
#   PROX_SHOPPING_MALL <dbl>, PROX_SUPERMARKET <dbl>, PROX_BUS_STOP <dbl>,
#   NO_Of_UNITS <dbl>, FAMILY_FRIENDLY <dbl>, FREEHOLD <dbl>,
#   LEASEHOLD_99YR <dbl>, geometry <POINT [m]>, and abbreviated variable names
#   ¹​SELLING_PRICE, ²​AREA_SQM, ³​PROX_CBD, ⁴​PROX_CHILDCARE, ⁵​PROX_ELDERLYCARE,
#   ⁶​PROX_URA_GROWTH_AREA, ⁷​PROX_HAWKER_MARKET, ⁸​PROX_KINDERGARTEN

Exploratory Data Analysis (EDA)

The statistical graphics functions of ggplot2 package will be used to perform EDA of the data.

EDA using statistical graphics

Plotting the distribution of SELLING_PRICE variable values:

ggplot(data = condo_resale.sf, aes(x = `SELLING_PRICE`)) +
  geom_histogram(bins = 20, color = "black", fill = "light blue")

The right-skewed distribution displayed above shows that more condominium units were transacted at relative lower prices.

Normalizing the distribution by performing a log transformation on the SELLING_PRICE variable using log() function:

condo_resale.sf <- condo_resale.sf %>%
  mutate(`LOG_SELLING_PRICE` = log(SELLING_PRICE))

Plotting the log-transformed variable:

ggplot(data = condo_resale.sf, aes(x = `LOG_SELLING_PRICE`)) +
  geom_histogram(bins = 20, color = "black", fill = "light blue")

The distribution is now more normalized and less skewed after the transformation.

Multiple histogram plots distribution of variables

Creating 12 histograms based on the various variables from the imported condo resale data, and arranging them using the ggarrange() function of ggpubr package:

AREA_SQM <- ggplot(data = condo_resale.sf, aes(x = `AREA_SQM`)) + 
  geom_histogram(bins = 20, color = "black", fill = "light blue")

AGE <- ggplot(data = condo_resale.sf, aes(x = `AGE`)) +
  geom_histogram(bins = 20, color = "black", fill = "light blue")

PROX_CBD <- ggplot(data = condo_resale.sf, aes(x = `PROX_CBD`)) +
  geom_histogram(bins = 20, color = "black", fill = "light blue")

PROX_CHILDCARE <- ggplot(data = condo_resale.sf, 
                         aes(x = `PROX_CHILDCARE`)) + 
  geom_histogram(bins = 20, color = "black", fill = "light blue")

PROX_ELDERLYCARE <- ggplot(data = condo_resale.sf, 
                           aes(x = `PROX_ELDERLYCARE`)) +
  geom_histogram(bins = 20, color = "black", fill = "light blue")

PROX_URA_GROWTH_AREA <- ggplot(data = condo_resale.sf, 
                               aes(x = `PROX_URA_GROWTH_AREA`)) +
  geom_histogram(bins = 20, color = "black", fill = "light blue")

PROX_HAWKER_MARKET <- ggplot(data = condo_resale.sf, 
                             aes(x = `PROX_HAWKER_MARKET`)) +
  geom_histogram(bins = 20, color = "black", fill = "light blue")

PROX_KINDERGARTEN <- ggplot(data = condo_resale.sf, 
                            aes(x = `PROX_KINDERGARTEN`)) +
  geom_histogram(bins = 20, color = "black", fill = "light blue")

PROX_MRT <- ggplot(data = condo_resale.sf, aes(x = `PROX_MRT`)) +
  geom_histogram(bins = 20, color = "black", fill = "light blue")

PROX_PARK <- ggplot(data = condo_resale.sf, aes(x = `PROX_PARK`)) +
  geom_histogram(bins = 20, color = "black", fill = "light blue")

PROX_PRIMARY_SCH <- ggplot(data = condo_resale.sf, 
                           aes(x = `PROX_PRIMARY_SCH`)) +
  geom_histogram(bins = 20, color = "black", fill = "light blue")

PROX_TOP_PRIMARY_SCH <- ggplot(data = condo_resale.sf, 
                               aes(x = `PROX_TOP_PRIMARY_SCH`)) +
  geom_histogram(bins = 20, color = "black", fill = "light blue")

ggarrange(AREA_SQM, AGE, PROX_CBD, PROX_CHILDCARE, PROX_ELDERLYCARE, 
          PROX_URA_GROWTH_AREA, PROX_HAWKER_MARKET, PROX_KINDERGARTEN, 
          PROX_MRT, PROX_PARK, PROX_PRIMARY_SCH, PROX_TOP_PRIMARY_SCH,  
          ncol = 3, nrow = 4)

Drawing statistical point map

Turning on the interactive mode of tmap:

tmap_mode("view")
tmap mode set to interactive viewing

Creating an interactive point symbol map showing the geospatial distribution of condominium resale prices across Singapore:

tm_shape(mpsz_svy21) +
  tmap_options(check.and.fix = TRUE) + # added to bypass the invalid polygon 
                                       # error existing in the shapefile data
  tm_polygons() + 
tm_shape(condo_resale.sf) +  
  tm_dots(col = "SELLING_PRICE",
          alpha = 0.6,
          style = "quantile") +
  tm_view(set.zoom.limits = c(11,14))
Warning: The shape mpsz_svy21 is invalid (after reprojection). See
sf::st_is_valid

Hedonic Pricing Modelling in R

Simple Linear Regression Method

Building a simple linear regression model using lm() function in R with SELLING_PRICE as the dependent variable and AREA_SQM as the independent variable:

condo.slr <- lm(formula = SELLING_PRICE ~ AREA_SQM, 
                data = condo_resale.sf)

Using summary() function to print a summary and analysis of the variance table of the results:

summary(condo.slr)

Call:
lm(formula = SELLING_PRICE ~ AREA_SQM, data = condo_resale.sf)

Residuals:
     Min       1Q   Median       3Q      Max 
-3695815  -391764   -87517   258900 13503875 

Coefficients:
             Estimate Std. Error t value Pr(>|t|)    
(Intercept) -258121.1    63517.2  -4.064 5.09e-05 ***
AREA_SQM      14719.0      428.1  34.381  < 2e-16 ***
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 942700 on 1434 degrees of freedom
Multiple R-squared:  0.4518,    Adjusted R-squared:  0.4515 
F-statistic:  1182 on 1 and 1434 DF,  p-value: < 2.2e-16

The output report shows that the SELLING_PRICE can be explained by the formula:

y = -258121.1 + 14719x

The R-squared value of 0.4518 implies that this simple linear regression model is able to explain about 45% of the resale prices.

The p-value is much smaller than 0.0001, so we can reject the null hypothesis of using mean as a good estimator of SELLING_PRICE. Instead, we can infer that the above simple linear regression model is a good estimator of SELLING_PRICE.

Visualizing the best fit curve for the linear regression on a scatterplot:

tmap_mode("plot")
tmap mode set to plotting
ggplot(data = condo_resale.sf,  
       aes(x = `AREA_SQM`, y = `SELLING_PRICE`)) +
  geom_point() +
  geom_smooth(method = lm)
`geom_smooth()` using formula = 'y ~ x'

The plot above shows that there are some statistical outliers with relatively high selling prices.

Multiple Linear Regression Method

Visualizing the relationships of the independent variables

The independent variables used in building a multiple linear regression model must not be highly correlated to each other to avoid the occurrence of multicollinearity which will compromise the quality of the model.

We'll use the corrplot package to generate a correlation matrix to allow us to identify and weed out such highly correlated variables:

(Note: the object passed to the corrplot function cannot contain the geometry field, so don't use the condo_resale.sf object but the condo_resale instead)

corrplot(cor(condo_resale[, 5:23]), diag = FALSE, order = "AOE",
         tl.pos = "td", tl.cex = 0.5, number.cex = 0.5, method = "number", type = "upper")

The correlation matrix shows that the FREEHOLD and LEASEHOLD_99YR variables are highly correlated to each other. We should use only one of them to avoid the problem of multicollinearity as described above. We'll drop the LEASEHOLD_99YR variable for subsequent model building.

Building a Hedonic Pricing Model using Multiple Linear Regression Method

Using the lm() function to calibrate the multiple linear regression model:

condo.mlr <- lm(formula = SELLING_PRICE ~ AREA_SQM + AGE + 
                  PROX_CBD + PROX_CHILDCARE + PROX_ELDERLYCARE +
                  PROX_URA_GROWTH_AREA + PROX_HAWKER_MARKET + 
                  PROX_KINDERGARTEN + PROX_MRT  + PROX_PARK + 
                  PROX_PRIMARY_SCH + PROX_TOP_PRIMARY_SCH + 
                  PROX_SHOPPING_MALL + PROX_SUPERMARKET + 
                  PROX_BUS_STOP + NO_Of_UNITS + FAMILY_FRIENDLY + FREEHOLD, 
                data = condo_resale.sf)
summary(condo.mlr)

Call:
lm(formula = SELLING_PRICE ~ AREA_SQM + AGE + PROX_CBD + PROX_CHILDCARE + 
    PROX_ELDERLYCARE + PROX_URA_GROWTH_AREA + PROX_HAWKER_MARKET + 
    PROX_KINDERGARTEN + PROX_MRT + PROX_PARK + PROX_PRIMARY_SCH + 
    PROX_TOP_PRIMARY_SCH + PROX_SHOPPING_MALL + PROX_SUPERMARKET + 
    PROX_BUS_STOP + NO_Of_UNITS + FAMILY_FRIENDLY + FREEHOLD, 
    data = condo_resale.sf)

Residuals:
     Min       1Q   Median       3Q      Max 
-3475964  -293923   -23069   241043 12260381 

Coefficients:
                       Estimate Std. Error t value Pr(>|t|)    
(Intercept)           481728.40  121441.01   3.967 7.65e-05 ***
AREA_SQM               12708.32     369.59  34.385  < 2e-16 ***
AGE                   -24440.82    2763.16  -8.845  < 2e-16 ***
PROX_CBD              -78669.78    6768.97 -11.622  < 2e-16 ***
PROX_CHILDCARE       -351617.91  109467.25  -3.212  0.00135 ** 
PROX_ELDERLYCARE      171029.42   42110.51   4.061 5.14e-05 ***
PROX_URA_GROWTH_AREA   38474.53   12523.57   3.072  0.00217 ** 
PROX_HAWKER_MARKET     23746.10   29299.76   0.810  0.41782    
PROX_KINDERGARTEN     147468.99   82668.87   1.784  0.07466 .  
PROX_MRT             -314599.68   57947.44  -5.429 6.66e-08 ***
PROX_PARK             563280.50   66551.68   8.464  < 2e-16 ***
PROX_PRIMARY_SCH      180186.08   65237.95   2.762  0.00582 ** 
PROX_TOP_PRIMARY_SCH    2280.04   20410.43   0.112  0.91107    
PROX_SHOPPING_MALL   -206604.06   42840.60  -4.823 1.57e-06 ***
PROX_SUPERMARKET      -44991.80   77082.64  -0.584  0.55953    
PROX_BUS_STOP         683121.35  138353.28   4.938 8.85e-07 ***
NO_Of_UNITS             -231.18      89.03  -2.597  0.00951 ** 
FAMILY_FRIENDLY       140340.77   47020.55   2.985  0.00289 ** 
FREEHOLD              359913.01   49220.22   7.312 4.38e-13 ***
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 755800 on 1417 degrees of freedom
Multiple R-squared:  0.6518,    Adjusted R-squared:  0.6474 
F-statistic: 147.4 on 18 and 1417 DF,  p-value: < 2.2e-16

Preparing Publication Quality Table: olsrr method

The above report reveals that not all the independent variables are statistically significant.

These will be removed and the model is recalibrated as follows:

condo.mlr1 <- lm(formula = SELLING_PRICE ~ AREA_SQM + AGE + 
                   PROX_CBD + PROX_CHILDCARE + PROX_ELDERLYCARE +
                   PROX_URA_GROWTH_AREA + PROX_MRT  + PROX_PARK + 
                   PROX_PRIMARY_SCH + PROX_SHOPPING_MALL + PROX_BUS_STOP + 
                   NO_Of_UNITS + FAMILY_FRIENDLY + FREEHOLD,
                 data = condo_resale.sf)
ols_regress(condo.mlr1)
                             Model Summary                               
------------------------------------------------------------------------
R                       0.807       RMSE                     755957.289 
R-Squared               0.651       Coef. Var                    43.168 
Adj. R-Squared          0.647       MSE                571471422208.591 
Pred R-Squared          0.638       MAE                      414819.628 
------------------------------------------------------------------------
 RMSE: Root Mean Square Error 
 MSE: Mean Square Error 
 MAE: Mean Absolute Error 

                                     ANOVA                                       
--------------------------------------------------------------------------------
                    Sum of                                                      
                   Squares          DF         Mean Square       F         Sig. 
--------------------------------------------------------------------------------
Regression    1.512586e+15          14        1.080418e+14    189.059    0.0000 
Residual      8.120609e+14        1421    571471422208.591                      
Total         2.324647e+15        1435                                          
--------------------------------------------------------------------------------

                                               Parameter Estimates                                                
-----------------------------------------------------------------------------------------------------------------
               model           Beta    Std. Error    Std. Beta       t        Sig           lower          upper 
-----------------------------------------------------------------------------------------------------------------
         (Intercept)     527633.222    108183.223                   4.877    0.000     315417.244     739849.200 
            AREA_SQM      12777.523       367.479        0.584     34.771    0.000      12056.663      13498.382 
                 AGE     -24687.739      2754.845       -0.167     -8.962    0.000     -30091.739     -19283.740 
            PROX_CBD     -77131.323      5763.125       -0.263    -13.384    0.000     -88436.469     -65826.176 
      PROX_CHILDCARE    -318472.751    107959.512       -0.084     -2.950    0.003    -530249.889    -106695.613 
    PROX_ELDERLYCARE     185575.623     39901.864        0.090      4.651    0.000     107302.737     263848.510 
PROX_URA_GROWTH_AREA      39163.254     11754.829        0.060      3.332    0.001      16104.571      62221.936 
            PROX_MRT    -294745.107     56916.367       -0.112     -5.179    0.000    -406394.234    -183095.980 
           PROX_PARK     570504.807     65507.029        0.150      8.709    0.000     442003.938     699005.677 
    PROX_PRIMARY_SCH     159856.136     60234.599        0.062      2.654    0.008      41697.849     278014.424 
  PROX_SHOPPING_MALL    -220947.251     36561.832       -0.115     -6.043    0.000    -292668.213    -149226.288 
       PROX_BUS_STOP     682482.221    134513.243        0.134      5.074    0.000     418616.359     946348.082 
         NO_Of_UNITS       -245.480        87.947       -0.053     -2.791    0.005       -418.000        -72.961 
     FAMILY_FRIENDLY     146307.576     46893.021        0.057      3.120    0.002      54320.593     238294.560 
            FREEHOLD     350599.812     48506.485        0.136      7.228    0.000     255447.802     445751.821 
-----------------------------------------------------------------------------------------------------------------

The Beta column implies that with one unit increase of the independent variable, what is the value change in the selling price.

Preparing Publication Quality Table: gtsummary method

Using the tbl_regression() function of gtsummary package to generate a well-formatted publication-ready regression report:

tbl_regression(condo.mlr1, intercept = TRUE)
Characteristic Beta 95% CI1 p-value
(Intercept) 527,633 315,417, 739,849 <0.001
AREA_SQM 12,778 12,057, 13,498 <0.001
AGE -24,688 -30,092, -19,284 <0.001
PROX_CBD -77,131 -88,436, -65,826 <0.001
PROX_CHILDCARE -318,473 -530,250, -106,696 0.003
PROX_ELDERLYCARE 185,576 107,303, 263,849 <0.001
PROX_URA_GROWTH_AREA 39,163 16,105, 62,222 <0.001
PROX_MRT -294,745 -406,394, -183,096 <0.001
PROX_PARK 570,505 442,004, 699,006 <0.001
PROX_PRIMARY_SCH 159,856 41,698, 278,014 0.008
PROX_SHOPPING_MALL -220,947 -292,668, -149,226 <0.001
PROX_BUS_STOP 682,482 418,616, 946,348 <0.001
NO_Of_UNITS -245 -418, -73 0.005
FAMILY_FRIENDLY 146,308 54,321, 238,295 0.002
FREEHOLD 350,600 255,448, 445,752 <0.001
1 CI = Confidence Interval

Adding the model statistics to the report as a table source note using add_glance_source_note() function:

tbl_regression(condo.mlr1, 
               intercept = TRUE) %>% 
  add_glance_source_note(
    label = list(sigma ~ "\U03C3"),
    include = c(r.squared, adj.r.squared, 
                AIC, statistic,
                p.value, sigma))
Characteristic Beta 95% CI1 p-value
(Intercept) 527,633 315,417, 739,849 <0.001
AREA_SQM 12,778 12,057, 13,498 <0.001
AGE -24,688 -30,092, -19,284 <0.001
PROX_CBD -77,131 -88,436, -65,826 <0.001
PROX_CHILDCARE -318,473 -530,250, -106,696 0.003
PROX_ELDERLYCARE 185,576 107,303, 263,849 <0.001
PROX_URA_GROWTH_AREA 39,163 16,105, 62,222 <0.001
PROX_MRT -294,745 -406,394, -183,096 <0.001
PROX_PARK 570,505 442,004, 699,006 <0.001
PROX_PRIMARY_SCH 159,856 41,698, 278,014 0.008
PROX_SHOPPING_MALL -220,947 -292,668, -149,226 <0.001
PROX_BUS_STOP 682,482 418,616, 946,348 <0.001
NO_Of_UNITS -245 -418, -73 0.005
FAMILY_FRIENDLY 146,308 54,321, 238,295 0.002
FREEHOLD 350,600 255,448, 445,752 <0.001
R² = 0.651; Adjusted R² = 0.647; AIC = 42,967; Statistic = 189; p-value = <0.001; σ = 755,957
1 CI = Confidence Interval

Checking for Multicollinearity

Using ols_vif_tol() function of olsrr package to detect occurrence of multicollinearity:

ols_vif_tol(condo.mlr1)
              Variables Tolerance      VIF
1              AREA_SQM 0.8728554 1.145665
2                   AGE 0.7071275 1.414172
3              PROX_CBD 0.6356147 1.573280
4        PROX_CHILDCARE 0.3066019 3.261559
5      PROX_ELDERLYCARE 0.6598479 1.515501
6  PROX_URA_GROWTH_AREA 0.7510311 1.331503
7              PROX_MRT 0.5236090 1.909822
8             PROX_PARK 0.8279261 1.207837
9      PROX_PRIMARY_SCH 0.4524628 2.210126
10   PROX_SHOPPING_MALL 0.6738795 1.483945
11        PROX_BUS_STOP 0.3514118 2.845664
12          NO_Of_UNITS 0.6901036 1.449058
13      FAMILY_FRIENDLY 0.7244157 1.380423
14             FREEHOLD 0.6931163 1.442759

The VIF of the independent variables are all lower than 10, indicating that there is no multicollinearity among them.

Test for Non-Linearity

Using the ols_plot_resid_fit() function to perform linearity assumption test for the relationship between dependent and independent variables:

ols_plot_resid_fit(condo.mlr1)

It is observed that most of the data points are scattered around the 0 line, indicating a linear relationship between the dependent variable and the independent variables.

Test for Normality Assumption

Using the ols_plot_resid_hist() function to perform normality assumption test:

ols_plot_resid_hist(condo.mlr1)

The above plot shows that the residual of the multiple linear regression model resembles a normal distribution.

We can also use the ols_test_normality() function to obtain the model statistics:

ols_test_normality(condo.mlr1)
Warning in ks.test.default(y, "pnorm", mean(y), sd(y)): ties should not be
present for the Kolmogorov-Smirnov test
-----------------------------------------------
       Test             Statistic       pvalue  
-----------------------------------------------
Shapiro-Wilk              0.6856         0.0000 
Kolmogorov-Smirnov        0.1366         0.0000 
Cramer-von Mises         121.0768        0.0000 
Anderson-Darling         67.9551         0.0000 
-----------------------------------------------

The above summary table shows that the p-values of the 4 tests are way smaller than the alpha value of 0.05, so the null hypothesis can be rejected and we can infer that there is statistical evidence that the residuals are not randomly distributed.

Testing for Spatial Autocorrelation

Step 1: Exporting the residuals of the hedonic pricing model and saving it as a data frame:

mlr.output <- as.data.frame(condo.mlr1$residuals)

Step 2: Joining this data frame with condo_resale.sf object:

condo_resale.res.sf <- cbind(condo_resale.sf, 
                        condo.mlr1$residuals) %>% 
  rename(`MLR_RES` = `condo.mlr1.residuals`)

Step 3: Converting the condo_resale.res.sf simple feature object into a SpatialPointsDataFrame object so that it can be processed by spdep package:

condo_resale.sp <- as_Spatial(condo_resale.res.sf)
condo_resale.sp
class       : SpatialPointsDataFrame 
features    : 1436 
extent      : 14940.85, 43352.45, 24765.67, 48382.81  (xmin, xmax, ymin, ymax)
crs         : +proj=tmerc +lat_0=1.36666666666667 +lon_0=103.833333333333 +k=1 +x_0=28001.642 +y_0=38744.572 +ellps=WGS84 +towgs84=0,0,0,0,0,0,0 +units=m +no_defs 
variables   : 23
names       : POSTCODE, SELLING_PRICE, AREA_SQM, AGE,    PROX_CBD, PROX_CHILDCARE, PROX_ELDERLYCARE, PROX_URA_GROWTH_AREA, PROX_HAWKER_MARKET, PROX_KINDERGARTEN,    PROX_MRT,   PROX_PARK, PROX_PRIMARY_SCH, PROX_TOP_PRIMARY_SCH, PROX_SHOPPING_MALL, ... 
min values  :    18965,        540000,       34,   0, 0.386916393,    0.004927023,      0.054508623,          0.214539508,        0.051817113,       0.004927023, 0.052779424, 0.029064164,      0.077106132,          0.077106132,                  0, ... 
max values  :   828833,       1.8e+07,      619,  37, 19.18042832,     3.46572633,      3.949157205,           9.15540001,        5.374348075,       2.229045366,  3.48037319,  2.16104919,      3.928989144,          6.748192062,        3.477433767, ... 

Step 4: Using tmap package to display the distribution of the residuals on an interactive point symbol map:

tmap_mode("view")
tmap mode set to interactive viewing
tm_shape(mpsz_svy21) +
  tmap_options(check.and.fix = TRUE) +
  tm_polygons(alpha = 0.4) +
tm_shape(condo_resale.res.sf) +  
  tm_dots(col = "MLR_RES",
          alpha = 0.6,
          style = "quantile") +
  tm_view(set.zoom.limits = c(11,14))
Warning: The shape mpsz_svy21 is invalid (after reprojection). See
sf::st_is_valid
Variable(s) "MLR_RES" contains positive and negative values, so midpoint is set to 0. Set midpoint = NA to show the full spectrum of the color palette.

The map shows that there is sign of spatial autocorrelation.

Moran's I test can be performed to validate this observation.

To do this, let's first compute the distance-based weight matrix by using dnearneigh() function of spdep package:

nb <- dnearneigh(coordinates(condo_resale.sp), 0, 1500, longlat = FALSE)
summary(nb)
Neighbour list object:
Number of regions: 1436 
Number of nonzero links: 66266 
Percentage nonzero weights: 3.213526 
Average number of links: 46.14624 
Link number distribution:

  1   3   5   7   9  10  11  12  13  14  15  16  17  18  19  20  21  22  23  24 
  3   3   9   4   3  15  10  19  17  45  19   5  14  29  19   6  35  45  18  47 
 25  26  27  28  29  30  31  32  33  34  35  36  37  38  39  40  41  42  43  44 
 16  43  22  26  21  11   9  23  22  13  16  25  21  37  16  18   8  21   4  12 
 45  46  47  48  49  50  51  52  53  54  55  56  57  58  59  60  61  62  63  64 
  8  36  18  14  14  43  11  12   8  13  12  13   4   5   6  12  11  20  29  33 
 65  66  67  68  69  70  71  72  73  74  75  76  77  78  79  80  81  82  83  84 
 15  20  10  14  15  15  11  16  12  10   8  19  12  14   9   8   4  13  11   6 
 85  86  87  88  89  90  91  92  93  94  95  96  97  98  99 100 101 102 103 104 
  4   9   4   4   4   6   2  16   9   4   5   9   3   9   4   2   1   2   1   1 
105 106 107 108 109 110 112 116 125 
  1   5   9   2   1   3   1   1   1 
3 least connected regions:
193 194 277 with 1 link
1 most connected region:
285 with 125 links

Next, nb2listw() function is used to convert the neighbours list into spatial weights:

nb_lw <- nb2listw(nb, style = 'W')
summary(nb_lw)
Characteristics of weights list object:
Neighbour list object:
Number of regions: 1436 
Number of nonzero links: 66266 
Percentage nonzero weights: 3.213526 
Average number of links: 46.14624 
Link number distribution:

  1   3   5   7   9  10  11  12  13  14  15  16  17  18  19  20  21  22  23  24 
  3   3   9   4   3  15  10  19  17  45  19   5  14  29  19   6  35  45  18  47 
 25  26  27  28  29  30  31  32  33  34  35  36  37  38  39  40  41  42  43  44 
 16  43  22  26  21  11   9  23  22  13  16  25  21  37  16  18   8  21   4  12 
 45  46  47  48  49  50  51  52  53  54  55  56  57  58  59  60  61  62  63  64 
  8  36  18  14  14  43  11  12   8  13  12  13   4   5   6  12  11  20  29  33 
 65  66  67  68  69  70  71  72  73  74  75  76  77  78  79  80  81  82  83  84 
 15  20  10  14  15  15  11  16  12  10   8  19  12  14   9   8   4  13  11   6 
 85  86  87  88  89  90  91  92  93  94  95  96  97  98  99 100 101 102 103 104 
  4   9   4   4   4   6   2  16   9   4   5   9   3   9   4   2   1   2   1   1 
105 106 107 108 109 110 112 116 125 
  1   5   9   2   1   3   1   1   1 
3 least connected regions:
193 194 277 with 1 link
1 most connected region:
285 with 125 links

Weights style: W 
Weights constants summary:
     n      nn   S0       S1       S2
W 1436 2062096 1436 94.81916 5798.341

Then, lm.morantest() function is used to perform Moran's I test for residual spatial correlation:

lm.morantest(condo.mlr1, nb_lw)

    Global Moran I for regression residuals

data:  
model: lm(formula = SELLING_PRICE ~ AREA_SQM + AGE + PROX_CBD +
PROX_CHILDCARE + PROX_ELDERLYCARE + PROX_URA_GROWTH_AREA + PROX_MRT +
PROX_PARK + PROX_PRIMARY_SCH + PROX_SHOPPING_MALL + PROX_BUS_STOP +
NO_Of_UNITS + FAMILY_FRIENDLY + FREEHOLD, data = condo_resale.sf)
weights: nb_lw

Moran I statistic standard deviate = 24.366, p-value < 2.2e-16
alternative hypothesis: greater
sample estimates:
Observed Moran I      Expectation         Variance 
    1.438876e-01    -5.487594e-03     3.758259e-05 

The Global Moran's I test for residual spatial autocorrelation shows that its p-value is less than 0.00000000000000022, which is less than the alpha value of 0.05. Hence, we can reject the null hypothesis that the residuals are randomly distributed.

Since the Observed Global Moran I = 0.1439 which is greater than 0, we can infer that the residuals resemble cluster distribution.

Building Hedonic Pricing Models using GWmodel

We shall model hedonic pricing using both fixed and adaptive bandwidth schemes:

Building Fixed Bandwidth GWR Model

Computing fixed bandwidth

Using bw.gwr() function of GWmodel package to determine the optimal fixed bandwidth to use in this model. The adaptive argument is set to "FALSE", and the approach argument, which defines the stopping rule, is set to "CV" (cross-validation):

bw.fixed <- bw.gwr(formula = SELLING_PRICE ~ AREA_SQM + AGE + PROX_CBD + 
                     PROX_CHILDCARE + PROX_ELDERLYCARE + PROX_URA_GROWTH_AREA +
                     PROX_MRT + PROX_PARK + PROX_PRIMARY_SCH + 
                     PROX_SHOPPING_MALL + PROX_BUS_STOP + NO_Of_UNITS + 
                     FAMILY_FRIENDLY + FREEHOLD, 
                   data = condo_resale.sp, 
                   approach = "CV", 
                   kernel = "gaussian", 
                   adaptive = FALSE, 
                   longlat = FALSE)
Fixed bandwidth: 17660.96 CV score: 8.259118e+14 
Fixed bandwidth: 10917.26 CV score: 7.970454e+14 
Fixed bandwidth: 6749.419 CV score: 7.273273e+14 
Fixed bandwidth: 4173.553 CV score: 6.300006e+14 
Fixed bandwidth: 2581.58 CV score: 5.404958e+14 
Fixed bandwidth: 1597.687 CV score: 4.857515e+14 
Fixed bandwidth: 989.6077 CV score: 4.722431e+14 
Fixed bandwidth: 613.7939 CV score: 1.378294e+16 
Fixed bandwidth: 1221.873 CV score: 4.778717e+14 
Fixed bandwidth: 846.0596 CV score: 4.791629e+14 
Fixed bandwidth: 1078.325 CV score: 4.751406e+14 
Fixed bandwidth: 934.7772 CV score: 4.72518e+14 
Fixed bandwidth: 1023.495 CV score: 4.730305e+14 
Fixed bandwidth: 968.6643 CV score: 4.721317e+14 
Fixed bandwidth: 955.7206 CV score: 4.722072e+14 
Fixed bandwidth: 976.6639 CV score: 4.721387e+14 
Fixed bandwidth: 963.7202 CV score: 4.721484e+14 
Fixed bandwidth: 971.7199 CV score: 4.721293e+14 
Fixed bandwidth: 973.6083 CV score: 4.721309e+14 
Fixed bandwidth: 970.5527 CV score: 4.721295e+14 
Fixed bandwidth: 972.4412 CV score: 4.721296e+14 
Fixed bandwidth: 971.2741 CV score: 4.721292e+14 
Fixed bandwidth: 970.9985 CV score: 4.721293e+14 
Fixed bandwidth: 971.4443 CV score: 4.721292e+14 
Fixed bandwidth: 971.5496 CV score: 4.721293e+14 
Fixed bandwidth: 971.3793 CV score: 4.721292e+14 
Fixed bandwidth: 971.3391 CV score: 4.721292e+14 
Fixed bandwidth: 971.3143 CV score: 4.721292e+14 
Fixed bandwidth: 971.3545 CV score: 4.721292e+14 
Fixed bandwidth: 971.3296 CV score: 4.721292e+14 
Fixed bandwidth: 971.345 CV score: 4.721292e+14 
Fixed bandwidth: 971.3355 CV score: 4.721292e+14 
Fixed bandwidth: 971.3413 CV score: 4.721292e+14 
Fixed bandwidth: 971.3377 CV score: 4.721292e+14 
Fixed bandwidth: 971.34 CV score: 4.721292e+14 
Fixed bandwidth: 971.3405 CV score: 4.721292e+14 
Fixed bandwidth: 971.3408 CV score: 4.721292e+14 
Fixed bandwidth: 971.3403 CV score: 4.721292e+14 
Fixed bandwidth: 971.3406 CV score: 4.721292e+14 
Fixed bandwidth: 971.3404 CV score: 4.721292e+14 
Fixed bandwidth: 971.3405 CV score: 4.721292e+14 
Fixed bandwidth: 971.3405 CV score: 4.721292e+14 

The recommended fixed bandwidth is 971.3405 metres. The unit is in metres because the map projection used (3414) measures distance in this unit.

GWModel method - fixed bandwidth

Calibrating the GWR model using fixed bandwidth and gaussian kernel:

gwr.fixed <- gwr.basic(formula = SELLING_PRICE ~ AREA_SQM + AGE + PROX_CBD + 
                         PROX_CHILDCARE + PROX_ELDERLYCARE + 
                         PROX_URA_GROWTH_AREA + PROX_MRT + PROX_PARK +
                         PROX_PRIMARY_SCH + PROX_SHOPPING_MALL + 
                         PROX_BUS_STOP + NO_Of_UNITS + 
                         FAMILY_FRIENDLY + FREEHOLD, 
                       data = condo_resale.sp, 
                       bw = bw.fixed, 
                       kernel = 'gaussian', 
                       longlat = FALSE)

Displaying the model output:

gwr.fixed
   ***********************************************************************
   *                       Package   GWmodel                             *
   ***********************************************************************
   Program starts at: 2022-12-11 16:38:41 
   Call:
   gwr.basic(formula = SELLING_PRICE ~ AREA_SQM + AGE + PROX_CBD + 
    PROX_CHILDCARE + PROX_ELDERLYCARE + PROX_URA_GROWTH_AREA + 
    PROX_MRT + PROX_PARK + PROX_PRIMARY_SCH + PROX_SHOPPING_MALL + 
    PROX_BUS_STOP + NO_Of_UNITS + FAMILY_FRIENDLY + FREEHOLD, 
    data = condo_resale.sp, bw = bw.fixed, kernel = "gaussian", 
    longlat = FALSE)

   Dependent (y) variable:  SELLING_PRICE
   Independent variables:  AREA_SQM AGE PROX_CBD PROX_CHILDCARE PROX_ELDERLYCARE PROX_URA_GROWTH_AREA PROX_MRT PROX_PARK PROX_PRIMARY_SCH PROX_SHOPPING_MALL PROX_BUS_STOP NO_Of_UNITS FAMILY_FRIENDLY FREEHOLD
   Number of data points: 1436
   ***********************************************************************
   *                    Results of Global Regression                     *
   ***********************************************************************

   Call:
    lm(formula = formula, data = data)

   Residuals:
     Min       1Q   Median       3Q      Max 
-3470778  -298119   -23481   248917 12234210 

   Coefficients:
                          Estimate Std. Error t value Pr(>|t|)    
   (Intercept)           527633.22  108183.22   4.877 1.20e-06 ***
   AREA_SQM               12777.52     367.48  34.771  < 2e-16 ***
   AGE                   -24687.74    2754.84  -8.962  < 2e-16 ***
   PROX_CBD              -77131.32    5763.12 -13.384  < 2e-16 ***
   PROX_CHILDCARE       -318472.75  107959.51  -2.950 0.003231 ** 
   PROX_ELDERLYCARE      185575.62   39901.86   4.651 3.61e-06 ***
   PROX_URA_GROWTH_AREA   39163.25   11754.83   3.332 0.000885 ***
   PROX_MRT             -294745.11   56916.37  -5.179 2.56e-07 ***
   PROX_PARK             570504.81   65507.03   8.709  < 2e-16 ***
   PROX_PRIMARY_SCH      159856.14   60234.60   2.654 0.008046 ** 
   PROX_SHOPPING_MALL   -220947.25   36561.83  -6.043 1.93e-09 ***
   PROX_BUS_STOP         682482.22  134513.24   5.074 4.42e-07 ***
   NO_Of_UNITS             -245.48      87.95  -2.791 0.005321 ** 
   FAMILY_FRIENDLY       146307.58   46893.02   3.120 0.001845 ** 
   FREEHOLD              350599.81   48506.48   7.228 7.98e-13 ***

   ---Significance stars
   Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 
   Residual standard error: 756000 on 1421 degrees of freedom
   Multiple R-squared: 0.6507
   Adjusted R-squared: 0.6472 
   F-statistic: 189.1 on 14 and 1421 DF,  p-value: < 2.2e-16 
   ***Extra Diagnostic information
   Residual sum of squares: 8.120609e+14
   Sigma(hat): 752522.9
   AIC:  42966.76
   AICc:  42967.14
   BIC:  41731.39
   ***********************************************************************
   *          Results of Geographically Weighted Regression              *
   ***********************************************************************

   *********************Model calibration information*********************
   Kernel function: gaussian 
   Fixed bandwidth: 971.3405 
   Regression points: the same locations as observations are used.
   Distance metric: Euclidean distance metric is used.

   ****************Summary of GWR coefficient estimates:******************
                               Min.     1st Qu.      Median     3rd Qu.
   Intercept            -3.5988e+07 -5.1998e+05  7.6780e+05  1.7412e+06
   AREA_SQM              1.0003e+03  5.2758e+03  7.4740e+03  1.2301e+04
   AGE                  -1.3475e+05 -2.0813e+04 -8.6260e+03 -3.7784e+03
   PROX_CBD             -7.7047e+07 -2.3608e+05 -8.3600e+04  3.4646e+04
   PROX_CHILDCARE       -6.0097e+06 -3.3667e+05 -9.7425e+04  2.9007e+05
   PROX_ELDERLYCARE     -3.5000e+06 -1.5970e+05  3.1971e+04  1.9577e+05
   PROX_URA_GROWTH_AREA -3.0170e+06 -8.2013e+04  7.0749e+04  2.2612e+05
   PROX_MRT             -3.5282e+06 -6.5836e+05 -1.8833e+05  3.6922e+04
   PROX_PARK            -1.2062e+06 -2.1732e+05  3.5383e+04  4.1335e+05
   PROX_PRIMARY_SCH     -2.2695e+07 -1.7066e+05  4.8472e+04  5.1555e+05
   PROX_SHOPPING_MALL   -7.2585e+06 -1.6684e+05 -1.0517e+04  1.5923e+05
   PROX_BUS_STOP        -1.4676e+06 -4.5207e+04  3.7601e+05  1.1664e+06
   NO_Of_UNITS          -1.3170e+03 -2.4822e+02 -3.0846e+01  2.5496e+02
   FAMILY_FRIENDLY      -2.2749e+06 -1.1140e+05  7.6214e+03  1.6107e+05
   FREEHOLD             -9.2067e+06  3.8073e+04  1.5169e+05  3.7528e+05
                             Max.
   Intercept            112793548
   AREA_SQM                 21575
   AGE                     434201
   PROX_CBD               2704596
   PROX_CHILDCARE         1654087
   PROX_ELDERLYCARE      38867814
   PROX_URA_GROWTH_AREA  78515730
   PROX_MRT               3124316
   PROX_PARK             18122425
   PROX_PRIMARY_SCH       4637503
   PROX_SHOPPING_MALL     1529952
   PROX_BUS_STOP         11342182
   NO_Of_UNITS              12907
   FAMILY_FRIENDLY        1720744
   FREEHOLD               6073636
   ************************Diagnostic information*************************
   Number of data points: 1436 
   Effective number of parameters (2trace(S) - trace(S'S)): 438.3804 
   Effective degrees of freedom (n-2trace(S) + trace(S'S)): 997.6196 
   AICc (GWR book, Fotheringham, et al. 2002, p. 61, eq 2.33): 42263.61 
   AIC (GWR book, Fotheringham, et al. 2002,GWR p. 96, eq. 4.22): 41632.36 
   BIC (GWR book, Fotheringham, et al. 2002,GWR p. 61, eq. 2.34): 42515.71 
   Residual sum of squares: 2.53407e+14 
   R-square value:  0.8909912 
   Adjusted R-square value:  0.8430417 

   ***********************************************************************
   Program stops at: 2022-12-11 16:38:46 

The adjusted R-square of this GWR model is 0.8430, which is significantly higher than the 0.6472 of the global multiple linear regression model above.

Building Adaptive Bandwidth GWR Model

Computing the adaptive bandwidth

The same bw.gwr() function is used to determine the recommended data points for the adaptive bandwidth, with the adaptive argument set to "TRUE" this time:

bw.adaptive <- bw.gwr(formula = SELLING_PRICE ~ AREA_SQM + AGE + 
                        PROX_CBD + PROX_CHILDCARE + PROX_ELDERLYCARE + 
                        PROX_URA_GROWTH_AREA + PROX_MRT + PROX_PARK + 
                        PROX_PRIMARY_SCH + PROX_SHOPPING_MALL + 
                        PROX_BUS_STOP + NO_Of_UNITS + FAMILY_FRIENDLY +
                        FREEHOLD, 
                      data = condo_resale.sp, 
                      approach = "CV", 
                      kernel = "gaussian", 
                      adaptive = TRUE, 
                      longlat = FALSE)
Adaptive bandwidth: 895 CV score: 7.952401e+14 
Adaptive bandwidth: 561 CV score: 7.667364e+14 
Adaptive bandwidth: 354 CV score: 6.953454e+14 
Adaptive bandwidth: 226 CV score: 6.15223e+14 
Adaptive bandwidth: 147 CV score: 5.674373e+14 
Adaptive bandwidth: 98 CV score: 5.426745e+14 
Adaptive bandwidth: 68 CV score: 5.168117e+14 
Adaptive bandwidth: 49 CV score: 4.859631e+14 
Adaptive bandwidth: 37 CV score: 4.646518e+14 
Adaptive bandwidth: 30 CV score: 4.422088e+14 
Adaptive bandwidth: 25 CV score: 4.430816e+14 
Adaptive bandwidth: 32 CV score: 4.505602e+14 
Adaptive bandwidth: 27 CV score: 4.462172e+14 
Adaptive bandwidth: 30 CV score: 4.422088e+14 

The result shows that 30 is the recommended data points to use.

Constructing the adaptive bandwidth gwr model

Calibrating the GWR-based hedonic pricing model using adaptive bandwidth and gaussian kernel

gwr.adaptive <- gwr.basic(formula = SELLING_PRICE ~ AREA_SQM + AGE + 
                            PROX_CBD + PROX_CHILDCARE + PROX_ELDERLYCARE + 
                            PROX_URA_GROWTH_AREA + PROX_MRT + PROX_PARK + 
                            PROX_PRIMARY_SCH + PROX_SHOPPING_MALL +
                            PROX_BUS_STOP + NO_Of_UNITS + FAMILY_FRIENDLY +
                            FREEHOLD, 
                          data = condo_resale.sp, bw=bw.adaptive, 
                          kernel = 'gaussian', 
                          adaptive = TRUE, 
                          longlat = FALSE)
gwr.adaptive
   ***********************************************************************
   *                       Package   GWmodel                             *
   ***********************************************************************
   Program starts at: 2022-12-11 16:39:26 
   Call:
   gwr.basic(formula = SELLING_PRICE ~ AREA_SQM + AGE + PROX_CBD + 
    PROX_CHILDCARE + PROX_ELDERLYCARE + PROX_URA_GROWTH_AREA + 
    PROX_MRT + PROX_PARK + PROX_PRIMARY_SCH + PROX_SHOPPING_MALL + 
    PROX_BUS_STOP + NO_Of_UNITS + FAMILY_FRIENDLY + FREEHOLD, 
    data = condo_resale.sp, bw = bw.adaptive, kernel = "gaussian", 
    adaptive = TRUE, longlat = FALSE)

   Dependent (y) variable:  SELLING_PRICE
   Independent variables:  AREA_SQM AGE PROX_CBD PROX_CHILDCARE PROX_ELDERLYCARE PROX_URA_GROWTH_AREA PROX_MRT PROX_PARK PROX_PRIMARY_SCH PROX_SHOPPING_MALL PROX_BUS_STOP NO_Of_UNITS FAMILY_FRIENDLY FREEHOLD
   Number of data points: 1436
   ***********************************************************************
   *                    Results of Global Regression                     *
   ***********************************************************************

   Call:
    lm(formula = formula, data = data)

   Residuals:
     Min       1Q   Median       3Q      Max 
-3470778  -298119   -23481   248917 12234210 

   Coefficients:
                          Estimate Std. Error t value Pr(>|t|)    
   (Intercept)           527633.22  108183.22   4.877 1.20e-06 ***
   AREA_SQM               12777.52     367.48  34.771  < 2e-16 ***
   AGE                   -24687.74    2754.84  -8.962  < 2e-16 ***
   PROX_CBD              -77131.32    5763.12 -13.384  < 2e-16 ***
   PROX_CHILDCARE       -318472.75  107959.51  -2.950 0.003231 ** 
   PROX_ELDERLYCARE      185575.62   39901.86   4.651 3.61e-06 ***
   PROX_URA_GROWTH_AREA   39163.25   11754.83   3.332 0.000885 ***
   PROX_MRT             -294745.11   56916.37  -5.179 2.56e-07 ***
   PROX_PARK             570504.81   65507.03   8.709  < 2e-16 ***
   PROX_PRIMARY_SCH      159856.14   60234.60   2.654 0.008046 ** 
   PROX_SHOPPING_MALL   -220947.25   36561.83  -6.043 1.93e-09 ***
   PROX_BUS_STOP         682482.22  134513.24   5.074 4.42e-07 ***
   NO_Of_UNITS             -245.48      87.95  -2.791 0.005321 ** 
   FAMILY_FRIENDLY       146307.58   46893.02   3.120 0.001845 ** 
   FREEHOLD              350599.81   48506.48   7.228 7.98e-13 ***

   ---Significance stars
   Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 
   Residual standard error: 756000 on 1421 degrees of freedom
   Multiple R-squared: 0.6507
   Adjusted R-squared: 0.6472 
   F-statistic: 189.1 on 14 and 1421 DF,  p-value: < 2.2e-16 
   ***Extra Diagnostic information
   Residual sum of squares: 8.120609e+14
   Sigma(hat): 752522.9
   AIC:  42966.76
   AICc:  42967.14
   BIC:  41731.39
   ***********************************************************************
   *          Results of Geographically Weighted Regression              *
   ***********************************************************************

   *********************Model calibration information*********************
   Kernel function: gaussian 
   Adaptive bandwidth: 30 (number of nearest neighbours)
   Regression points: the same locations as observations are used.
   Distance metric: Euclidean distance metric is used.

   ****************Summary of GWR coefficient estimates:******************
                               Min.     1st Qu.      Median     3rd Qu.
   Intercept            -1.3487e+08 -2.4669e+05  7.7928e+05  1.6194e+06
   AREA_SQM              3.3188e+03  5.6285e+03  7.7825e+03  1.2738e+04
   AGE                  -9.6746e+04 -2.9288e+04 -1.4043e+04 -5.6119e+03
   PROX_CBD             -2.5330e+06 -1.6256e+05 -7.7242e+04  2.6624e+03
   PROX_CHILDCARE       -1.2790e+06 -2.0175e+05  8.7158e+03  3.7778e+05
   PROX_ELDERLYCARE     -1.6212e+06 -9.2050e+04  6.1029e+04  2.8184e+05
   PROX_URA_GROWTH_AREA -7.2686e+06 -3.0350e+04  4.5869e+04  2.4613e+05
   PROX_MRT             -4.3781e+07 -6.7282e+05 -2.2115e+05 -7.4593e+04
   PROX_PARK            -2.9020e+06 -1.6782e+05  1.1601e+05  4.6572e+05
   PROX_PRIMARY_SCH     -8.6418e+05 -1.6627e+05 -7.7853e+03  4.3222e+05
   PROX_SHOPPING_MALL   -1.8272e+06 -1.3175e+05 -1.4049e+04  1.3799e+05
   PROX_BUS_STOP        -2.0579e+06 -7.1461e+04  4.1104e+05  1.2071e+06
   NO_Of_UNITS          -2.1993e+03 -2.3685e+02 -3.4699e+01  1.1657e+02
   FAMILY_FRIENDLY      -5.9879e+05 -5.0927e+04  2.6173e+04  2.2481e+05
   FREEHOLD             -1.6340e+05  4.0765e+04  1.9023e+05  3.7960e+05
                            Max.
   Intercept            18758355
   AREA_SQM                23064
   AGE                     13303
   PROX_CBD             11346650
   PROX_CHILDCARE        2892127
   PROX_ELDERLYCARE      2465671
   PROX_URA_GROWTH_AREA  7384059
   PROX_MRT              1186242
   PROX_PARK             2588497
   PROX_PRIMARY_SCH      3381462
   PROX_SHOPPING_MALL   38038564
   PROX_BUS_STOP        12081592
   NO_Of_UNITS              1010
   FAMILY_FRIENDLY       2072414
   FREEHOLD              1813995
   ************************Diagnostic information*************************
   Number of data points: 1436 
   Effective number of parameters (2trace(S) - trace(S'S)): 350.3088 
   Effective degrees of freedom (n-2trace(S) + trace(S'S)): 1085.691 
   AICc (GWR book, Fotheringham, et al. 2002, p. 61, eq 2.33): 41982.22 
   AIC (GWR book, Fotheringham, et al. 2002,GWR p. 96, eq. 4.22): 41546.74 
   BIC (GWR book, Fotheringham, et al. 2002,GWR p. 61, eq. 2.34): 41914.08 
   Residual sum of squares: 2.528227e+14 
   R-square value:  0.8912425 
   Adjusted R-square value:  0.8561185 

   ***********************************************************************
   Program stops at: 2022-12-11 16:39:32 

The AICc of the GWR model is 41982, compared to 42967 of the global multiple linear regression model. The former is smaller, and hence is better.

The adjusted R-square of this GWR model is 0.8561, which is significantly higher than the 0.6472 of the global multiple linear regression model above.

Visualizing GWR Output

The GWR output contains data in a SDF object.

Converting SDF into sf data.frame

condo_resale.sf.adaptive <- st_as_sf(gwr.adaptive$SDF) %>%
  st_transform(crs = 3414)
condo_resale.sf.adaptive.svy21 <- st_transform(condo_resale.sf.adaptive, 3414)
condo_resale.sf.adaptive.svy21  
Simple feature collection with 1436 features and 51 fields
Geometry type: POINT
Dimension:     XY
Bounding box:  xmin: 14940.85 ymin: 24765.67 xmax: 43352.45 ymax: 48382.81
Projected CRS: SVY21 / Singapore TM
First 10 features:
    Intercept  AREA_SQM        AGE  PROX_CBD PROX_CHILDCARE PROX_ELDERLYCARE
1   2050011.7  9561.892  -9514.634 -120681.9      319266.92       -393417.79
2   1633128.2 16576.853 -58185.479 -149434.2      441102.18        325188.74
3   3433608.2 13091.861 -26707.386 -259397.8     -120116.82        535855.81
4    234358.9 20730.601 -93308.988 2426853.7      480825.28        314783.72
5   2285804.9  6722.836 -17608.018 -316835.5       90764.78       -137384.61
6  -3568877.4  6039.581 -26535.592  327306.1     -152531.19       -700392.85
7  -2874842.4 16843.575 -59166.727 -983577.2     -177810.50       -122384.02
8   2038086.0  6905.135 -17681.897 -285076.6       70259.40        -96012.78
9   1718478.4  9580.703 -14401.128  105803.4     -657698.02       -123276.00
10  3457054.0 14072.011 -31579.884 -234895.4       79961.45        548581.04
   PROX_URA_GROWTH_AREA    PROX_MRT  PROX_PARK PROX_PRIMARY_SCH
1            -159980.20  -299742.96 -172104.47        242668.03
2            -142290.39 -2510522.23  523379.72       1106830.66
3            -253621.21  -936853.28  209099.85        571462.33
4           -2679297.89 -2039479.50 -759153.26       3127477.21
5             303714.81   -44567.05  -10284.62         30413.56
6             -28051.25   733566.47 1511488.92        320878.23
7            1397676.38 -2745430.34  710114.74       1786570.95
8             269368.71   -14552.99   73533.34         53359.73
9            -361974.72  -476785.32 -132067.59        -40128.92
10           -150024.38 -1503835.53  574155.47        108996.67
   PROX_SHOPPING_MALL PROX_BUS_STOP  NO_Of_UNITS FAMILY_FRIENDLY  FREEHOLD
1          300881.390     1210615.4  104.8290640       -9075.370  303955.6
2          -87693.378     1843587.2 -288.3441183      310074.664  396221.3
3         -126732.712     1411924.9   -9.5532945        5949.746  168821.7
4          -29593.342     7225577.5 -161.3551620     1556178.531 1212515.6
5           -7490.586      677577.0   42.2659674       58986.951  328175.2
6          258583.881     1086012.6 -214.3671271      201992.641  471873.1
7         -384251.210     5094060.5   -0.9212521      359659.512  408871.9
8          -39634.902      735767.1   30.1741069       55602.506  347075.0
9          276718.757     2815772.4  675.1615559      -30453.297  503872.8
10        -454726.822     2123557.0  -21.3044311     -100935.586  213324.6
         y    yhat    residual CV_Score Stud_residual Intercept_SE AREA_SQM_SE
1  3000000 2886532   113468.16        0    0.38207013     516105.5    823.2860
2  3880000 3466801   413198.52        0    1.01433140     488083.5    825.2380
3  3325000 3616527  -291527.20        0   -0.83780678     963711.4    988.2240
4  4250000 5435482 -1185481.63        0   -2.84614670     444185.5    617.4007
5  1400000 1388166    11834.26        0    0.03404453    2119620.6   1376.2778
6  1320000 1516702  -196701.94        0   -0.72065800   28572883.7   2348.0091
7  3410000 3266881   143118.77        0    0.41291992     679546.6    893.5893
8  1420000 1431955   -11955.27        0   -0.03033109    2217773.1   1415.2604
9  2025000 1832799   192200.83        0    0.52018109     814281.8    943.8434
10 2550000 2223364   326635.53        0    1.10559735    2410252.0   1271.4073
      AGE_SE PROX_CBD_SE PROX_CHILDCARE_SE PROX_ELDERLYCARE_SE
1   5889.782    37411.22          319111.1           120633.34
2   6226.916    23615.06          299705.3            84546.69
3   6510.236    56103.77          349128.5           129687.07
4   6010.511   469337.41          304965.2           127150.69
5   8180.361   410644.47          698720.6           327371.55
6  14601.909  5272846.47         1141599.8          1653002.19
7   8970.629   346164.20          530101.1           148598.71
8   8661.309   438035.69          742532.8           399221.05
9  11791.208    89148.35          704630.7           329683.30
10  9941.980   173532.77          500976.2           281876.74
   PROX_URA_GROWTH_AREA_SE PROX_MRT_SE PROX_PARK_SE PROX_PRIMARY_SCH_SE
1                 56207.39    185181.3     205499.6            152400.7
2                 76956.50    281133.9     229358.7            165150.7
3                 95774.60    275483.7     314124.3            196662.6
4                470762.12    279877.1     227249.4            240878.9
5                474339.56    363830.0     364580.9            249087.7
6               5496627.21    730453.2    1741712.0            683265.5
7                371692.97    375511.9     297400.9            344602.8
8                517977.91    423155.4     440984.4            261251.2
9                153436.22    285325.4     304998.4            278258.5
10               239182.57    571355.7     599131.8            331284.8
   PROX_SHOPPING_MALL_SE PROX_BUS_STOP_SE NO_Of_UNITS_SE FAMILY_FRIENDLY_SE
1               109268.8         600668.6       218.1258           131474.7
2                98906.8         410222.1       208.9410           114989.1
3               119913.3         464156.7       210.9828           146607.2
4               177104.1         562810.8       361.7767           108726.6
5               301032.9         740922.4       299.5034           160663.7
6              2931208.6        1418333.3       602.5571           331727.0
7               249969.5         821236.4       532.1978           129241.2
8               351634.0         775038.4       338.6777           171895.1
9               289872.7         850095.5       439.9037           220223.4
10              265529.7         631399.2       259.0169           189125.5
   FREEHOLD_SE Intercept_TV AREA_SQM_TV     AGE_TV PROX_CBD_TV
1     115954.0    3.9720784   11.614302  -1.615447 -3.22582173
2     130110.0    3.3460017   20.087361  -9.344188 -6.32792021
3     141031.5    3.5629010   13.247868  -4.102368 -4.62353528
4     138239.1    0.5276150   33.577223 -15.524302  5.17080808
5     210641.1    1.0784029    4.884795  -2.152474 -0.77155660
6     374347.3   -0.1249043    2.572214  -1.817269  0.06207388
7     182216.9   -4.2305303   18.849348  -6.595605 -2.84136028
8     216649.4    0.9189786    4.879056  -2.041481 -0.65080678
9     220473.7    2.1104224   10.150733  -1.221345  1.18682383
10    206346.2    1.4343123   11.068059  -3.176418 -1.35360852
   PROX_CHILDCARE_TV PROX_ELDERLYCARE_TV PROX_URA_GROWTH_AREA_TV PROX_MRT_TV
1         1.00048819          -3.2612693            -2.846248368 -1.61864578
2         1.47178634           3.8462625            -1.848971738 -8.92998600
3        -0.34404755           4.1319138            -2.648105057 -3.40075727
4         1.57665606           2.4756745            -5.691404992 -7.28705261
5         0.12990138          -0.4196596             0.640289855 -0.12249416
6        -0.13361179          -0.4237096            -0.005103357  1.00426206
7        -0.33542751          -0.8235874             3.760298131 -7.31116712
8         0.09462126          -0.2405003             0.520038994 -0.03439159
9        -0.93339393          -0.3739225            -2.359121712 -1.67102293
10        0.15961128           1.9461735            -0.627237944 -2.63204802
   PROX_PARK_TV PROX_PRIMARY_SCH_TV PROX_SHOPPING_MALL_TV PROX_BUS_STOP_TV
1   -0.83749312           1.5923022            2.75358842        2.0154464
2    2.28192684           6.7019454           -0.88662640        4.4941192
3    0.66565951           2.9058009           -1.05686949        3.0419145
4   -3.34061770          12.9836105           -0.16709578       12.8383775
5   -0.02820944           0.1220998           -0.02488294        0.9145046
6    0.86781794           0.4696245            0.08821750        0.7656963
7    2.38773567           5.1844351           -1.53719231        6.2029165
8    0.16674816           0.2042469           -0.11271635        0.9493299
9   -0.43301073          -0.1442145            0.95462153        3.3123012
10   0.95831249           0.3290120           -1.71252687        3.3632555
   NO_Of_UNITS_TV FAMILY_FRIENDLY_TV FREEHOLD_TV  Local_R2
1     0.480589953        -0.06902748    2.621347 0.8846744
2    -1.380026395         2.69655779    3.045280 0.8899773
3    -0.045279967         0.04058290    1.197050 0.8947007
4    -0.446007570        14.31276425    8.771149 0.9073605
5     0.141120178         0.36714544    1.557983 0.9510057
6    -0.355762335         0.60891234    1.260522 0.9247586
7    -0.001731033         2.78285441    2.243875 0.8310458
8     0.089093858         0.32346758    1.602012 0.9463936
9     1.534793921        -0.13828365    2.285410 0.8380365
10   -0.082251138        -0.53369623    1.033819 0.9080753
                    geometry
1  POINT (22085.12 29951.54)
2   POINT (25656.84 34546.2)
3   POINT (23963.99 32890.8)
4  POINT (27044.28 32319.77)
5  POINT (41042.56 33743.64)
6   POINT (39717.04 32943.1)
7   POINT (28419.1 33513.37)
8  POINT (40763.57 33879.61)
9  POINT (23595.63 28884.78)
10 POINT (24586.56 33194.31)
gwr.adaptive.output <- as.data.frame(gwr.adaptive$SDF)
condo_resale.sf.adaptive <- cbind(condo_resale.res.sf, 
                                  as.matrix(gwr.adaptive.output))
glimpse(condo_resale.sf.adaptive)
Rows: 1,436
Columns: 77
$ POSTCODE                <dbl> 118635, 288420, 267833, 258380, 467169, 466472…
$ SELLING_PRICE           <dbl> 3000000, 3880000, 3325000, 4250000, 1400000, 1…
$ AREA_SQM                <dbl> 309, 290, 248, 127, 145, 139, 218, 141, 165, 1…
$ AGE                     <dbl> 30, 32, 33, 7, 28, 22, 24, 24, 27, 31, 17, 22,…
$ PROX_CBD                <dbl> 7.941259, 6.609797, 6.898000, 4.038861, 11.783…
$ PROX_CHILDCARE          <dbl> 0.16597932, 0.28027246, 0.42922669, 0.39473543…
$ PROX_ELDERLYCARE        <dbl> 2.5198118, 1.9333338, 0.5021395, 1.9910316, 1.…
$ PROX_URA_GROWTH_AREA    <dbl> 6.618741, 7.505109, 6.463887, 4.906512, 6.4106…
$ PROX_HAWKER_MARKET      <dbl> 1.76542207, 0.54507614, 0.37789301, 1.68259969…
$ PROX_KINDERGARTEN       <dbl> 0.05835552, 0.61592412, 0.14120309, 0.38200076…
$ PROX_MRT                <dbl> 0.5607188, 0.6584461, 0.3053433, 0.6910183, 0.…
$ PROX_PARK               <dbl> 1.1710446, 0.1992269, 0.2779886, 0.9832843, 0.…
$ PROX_PRIMARY_SCH        <dbl> 1.6340256, 0.9747834, 1.4715016, 1.4546324, 0.…
$ PROX_TOP_PRIMARY_SCH    <dbl> 3.3273195, 0.9747834, 1.4715016, 2.3006394, 0.…
$ PROX_SHOPPING_MALL      <dbl> 2.2102717, 2.9374279, 1.2256850, 0.3525671, 1.…
$ PROX_SUPERMARKET        <dbl> 0.9103958, 0.5900617, 0.4135583, 0.4162219, 0.…
$ PROX_BUS_STOP           <dbl> 0.10336166, 0.28673408, 0.28504777, 0.29872340…
$ NO_Of_UNITS             <dbl> 18, 20, 27, 30, 30, 31, 32, 32, 32, 32, 34, 34…
$ FAMILY_FRIENDLY         <dbl> 0, 0, 0, 0, 0, 1, 1, 0, 1, 1, 0, 0, 0, 0, 0, 0…
$ FREEHOLD                <dbl> 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1…
$ LEASEHOLD_99YR          <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0…
$ LOG_SELLING_PRICE       <dbl> 14.91412, 15.17135, 15.01698, 15.26243, 14.151…
$ MLR_RES                 <dbl> -1489099.55, 415494.57, 194129.69, 1088992.71,…
$ Intercept               <dbl> 2050011.67, 1633128.24, 3433608.17, 234358.91,…
$ AREA_SQM.1              <dbl> 9561.892, 16576.853, 13091.861, 20730.601, 672…
$ AGE.1                   <dbl> -9514.634, -58185.479, -26707.386, -93308.988,…
$ PROX_CBD.1              <dbl> -120681.94, -149434.22, -259397.77, 2426853.66…
$ PROX_CHILDCARE.1        <dbl> 319266.925, 441102.177, -120116.816, 480825.28…
$ PROX_ELDERLYCARE.1      <dbl> -393417.795, 325188.741, 535855.806, 314783.72…
$ PROX_URA_GROWTH_AREA.1  <dbl> -159980.203, -142290.389, -253621.206, -267929…
$ PROX_MRT.1              <dbl> -299742.96, -2510522.23, -936853.28, -2039479.…
$ PROX_PARK.1             <dbl> -172104.47, 523379.72, 209099.85, -759153.26, …
$ PROX_PRIMARY_SCH.1      <dbl> 242668.03, 1106830.66, 571462.33, 3127477.21, …
$ PROX_SHOPPING_MALL.1    <dbl> 300881.390, -87693.378, -126732.712, -29593.34…
$ PROX_BUS_STOP.1         <dbl> 1210615.44, 1843587.22, 1411924.90, 7225577.51…
$ NO_Of_UNITS.1           <dbl> 104.8290640, -288.3441183, -9.5532945, -161.35…
$ FAMILY_FRIENDLY.1       <dbl> -9075.370, 310074.664, 5949.746, 1556178.531, …
$ FREEHOLD.1              <dbl> 303955.61, 396221.27, 168821.75, 1212515.58, 3…
$ y                       <dbl> 3000000, 3880000, 3325000, 4250000, 1400000, 1…
$ yhat                    <dbl> 2886531.8, 3466801.5, 3616527.2, 5435481.6, 13…
$ residual                <dbl> 113468.16, 413198.52, -291527.20, -1185481.63,…
$ CV_Score                <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0…
$ Stud_residual           <dbl> 0.38207013, 1.01433140, -0.83780678, -2.846146…
$ Intercept_SE            <dbl> 516105.5, 488083.5, 963711.4, 444185.5, 211962…
$ AREA_SQM_SE             <dbl> 823.2860, 825.2380, 988.2240, 617.4007, 1376.2…
$ AGE_SE                  <dbl> 5889.782, 6226.916, 6510.236, 6010.511, 8180.3…
$ PROX_CBD_SE             <dbl> 37411.22, 23615.06, 56103.77, 469337.41, 41064…
$ PROX_CHILDCARE_SE       <dbl> 319111.1, 299705.3, 349128.5, 304965.2, 698720…
$ PROX_ELDERLYCARE_SE     <dbl> 120633.34, 84546.69, 129687.07, 127150.69, 327…
$ PROX_URA_GROWTH_AREA_SE <dbl> 56207.39, 76956.50, 95774.60, 470762.12, 47433…
$ PROX_MRT_SE             <dbl> 185181.3, 281133.9, 275483.7, 279877.1, 363830…
$ PROX_PARK_SE            <dbl> 205499.6, 229358.7, 314124.3, 227249.4, 364580…
$ PROX_PRIMARY_SCH_SE     <dbl> 152400.7, 165150.7, 196662.6, 240878.9, 249087…
$ PROX_SHOPPING_MALL_SE   <dbl> 109268.8, 98906.8, 119913.3, 177104.1, 301032.…
$ PROX_BUS_STOP_SE        <dbl> 600668.6, 410222.1, 464156.7, 562810.8, 740922…
$ NO_Of_UNITS_SE          <dbl> 218.1258, 208.9410, 210.9828, 361.7767, 299.50…
$ FAMILY_FRIENDLY_SE      <dbl> 131474.73, 114989.07, 146607.22, 108726.62, 16…
$ FREEHOLD_SE             <dbl> 115954.0, 130110.0, 141031.5, 138239.1, 210641…
$ Intercept_TV            <dbl> 3.9720784, 3.3460017, 3.5629010, 0.5276150, 1.…
$ AREA_SQM_TV             <dbl> 11.614302, 20.087361, 13.247868, 33.577223, 4.…
$ AGE_TV                  <dbl> -1.6154474, -9.3441881, -4.1023685, -15.524301…
$ PROX_CBD_TV             <dbl> -3.22582173, -6.32792021, -4.62353528, 5.17080…
$ PROX_CHILDCARE_TV       <dbl> 1.000488185, 1.471786337, -0.344047555, 1.5766…
$ PROX_ELDERLYCARE_TV     <dbl> -3.26126929, 3.84626245, 4.13191383, 2.4756745…
$ PROX_URA_GROWTH_AREA_TV <dbl> -2.846248368, -1.848971738, -2.648105057, -5.6…
$ PROX_MRT_TV             <dbl> -1.61864578, -8.92998600, -3.40075727, -7.2870…
$ PROX_PARK_TV            <dbl> -0.83749312, 2.28192684, 0.66565951, -3.340617…
$ PROX_PRIMARY_SCH_TV     <dbl> 1.59230221, 6.70194543, 2.90580089, 12.9836104…
$ PROX_SHOPPING_MALL_TV   <dbl> 2.753588422, -0.886626400, -1.056869486, -0.16…
$ PROX_BUS_STOP_TV        <dbl> 2.0154464, 4.4941192, 3.0419145, 12.8383775, 0…
$ NO_Of_UNITS_TV          <dbl> 0.480589953, -1.380026395, -0.045279967, -0.44…
$ FAMILY_FRIENDLY_TV      <dbl> -0.06902748, 2.69655779, 0.04058290, 14.312764…
$ FREEHOLD_TV             <dbl> 2.6213469, 3.0452799, 1.1970499, 8.7711485, 1.…
$ Local_R2                <dbl> 0.8846744, 0.8899773, 0.8947007, 0.9073605, 0.…
$ coords.x1               <dbl> 22085.12, 25656.84, 23963.99, 27044.28, 41042.…
$ coords.x2               <dbl> 29951.54, 34546.20, 32890.80, 32319.77, 33743.…
$ geometry                <POINT [m]> POINT (22085.12 29951.54), POINT (25656.…
summary(gwr.adaptive$SDF$yhat)
    Min.  1st Qu.   Median     Mean  3rd Qu.     Max. 
  171347  1102001  1385528  1751842  1982307 13887901 

Visualizing local R2

Creating an interactive point symbol map to display the GWR data:

tmap_mode("view")
tmap mode set to interactive viewing
tm_shape(mpsz_svy21) +
  tm_polygons(alpha = 0.1) +
tm_shape(condo_resale.sf.adaptive) +  
  tm_dots(col = "Local_R2",
          border.col = "gray60",
          border.lwd = 1) +
  tm_view(set.zoom.limits = c(11,14))
Warning: The shape mpsz_svy21 is invalid (after reprojection). See
sf::st_is_valid

Zoom is restricted to 11 to 14 using set.zoom.limits argument.

Visualizing coefficient estimates

Creating a twin view to facilitate comparison with T-value:

tmap_mode("view")
tmap mode set to interactive viewing
AREA_SQM_SE <- tm_shape(mpsz_svy21) +
  tm_polygons(alpha = 0.1) +
tm_shape(condo_resale.sf.adaptive) +  
  tm_dots(col = "AREA_SQM_SE",
          border.col = "gray60",
          border.lwd = 1) +
  tm_view(set.zoom.limits = c(11,14))

AREA_SQM_TV <- tm_shape(mpsz_svy21) +
  tm_polygons(alpha = 0.1) +
tm_shape(condo_resale.sf.adaptive) +  
  tm_dots(col = "AREA_SQM_TV",
          border.col = "gray60",
          border.lwd = 1) +
  tm_view(set.zoom.limits = c(11,14))

tmap_arrange(AREA_SQM_SE, AREA_SQM_TV, 
             asp=1, ncol=2,
             sync = TRUE)
Warning: The shape mpsz_svy21 is invalid (after reprojection). See
sf::st_is_valid

Warning: The shape mpsz_svy21 is invalid (after reprojection). See
sf::st_is_valid

By URA Plannign Region

tmap_mode("plot")
tmap mode set to plotting
tm_shape(mpsz_svy21[mpsz_svy21$REGION_N == "CENTRAL REGION", ]) +
  tm_polygons() +
tm_shape(condo_resale.sf.adaptive) + 
  tm_bubbles(col = "Local_R2",
           size = 0.15,
           border.col = "gray60",
           border.lwd = 1)
Warning: The shape mpsz_svy21[mpsz_svy21$REGION_N == "CENTRAL REGION", ] is
invalid. See sf::st_is_valid